a2 United States Patent

McKeown et al.

US009207965B2

US 9,207,965 B2
Dec. 8, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

MANAGING MULTI-APPLICATION
CONTEXTS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Robert J. McKeown, Newburyport, MA
(US); Patrick J. O’Sullivan, Dublin (IE)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 242 days.

Appl. No.: 13/913,773

Filed: Jun. 10, 2013
Prior Publication Data
US 2014/0366038 Al Dec. 11, 2014
Int. CI.
GOG6F 9/46 (2006.01)
GOGF 9/48 (2006.01)
HO04L 29/06 (2006.01)
HO4L 12/18 (2006.01)
U.S. CL
CPC ..o GO6F 9/461 (2013.01); HO4L 12/18

(2013.01); HO4L 29/06394 (2013.01); HO4L
29/06401 (2013.01); GO6F 9/48 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
2010/0115530 Al*

2012/0005596 Al
2012/0131321 Al

5/2010 Ahmadetal. ... 718/108
1/2012 Carlson et al.
5/2012 lJitkoff et al.

* cited by examiner

Primary Examiner — Qing Wu
(74) Attorney, Agent, or Firm — Reza Sarbakhsh; Dermott
Cooke

(57) ABSTRACT

A method and system for managing software application
states selects a plurality of stateful applications for reinstate-
ment at a later time. A set of data contexts is generated based
onthe selected applications. The set of data contexts is pushed
onto a data stack. Thereafter the set of data contexts is popped
from the data stack for reinstatement. Each step or function
may be initiated automatically or through user input, and may
be used in a single-user, multi-user or collaborative setting.

20 Claims, 2 Drawing Sheets

200

;s

Select applications and states. 204

Generate corresponding data context(s). 208

Push the data context(s) onto a data stack. 212

Pop the data context(s) from the stack. 216

U.S. Patent Dec. 8, 2015 Sheet 1 of 2 US 9,207,965 B2
10
COMPUTER/SERVER 28
L
12\ 30 MEMORY 34
| R | T
16
L 32 40~
PROCESSING 42|
UNIT
24 22 1SL
{ L >
DISPLAY INTERIIIS\CE(S) NETWORK ADAPTER ‘
14
L
EXTERNAL
DEVICE(S)

FIG. 1

200

Select applications and states. 204

Generate corresponding data context(s). 208

Push the data context(s) onto a data stack. 212

Pop the data context(s) from the stack. 216

FIG. 2

U.S. Patent Dec. 8, 2015 Sheet 2 of 2 US 9,207,965 B2
User
304
COORDINATOR
Open Applications
{App1_1,App1_2, App1_3} [\-308
Context1_1 Context1_2 Stack_1 Stack_n
316a+ ™ App1_1 {Context1_1,
A Context1_2} {3
316a-{ ~{App1_2| [APP1_2 }—T_346p
316a- ™| App1_3] [App1_3 |\J/1316b
7 7
Z 324 324
312 312
FIG. 3A

» Stack_1

{Context1_1,
Context2_1}

COORDINATOR

Stack_2

{Context1_2,
Context2_2}

324 324
User_1 User_2
- T\ 304 - T\ 304
Open Applications Open Applications

{App1_1, App1_2, App1_3} [T~ \- 308 {App2_1, App2_2, App2_3} [T~ - 308

Context1_1 Context1_2 Context2_1 Context2_2
316a - > App1_1 316¢c 4 ™ App2_1
316a 4 [App1_2 316c MApp2 2] | | [APP2 2} T\ 3464
316a - [~{App1_3] [APP1_31T_ 346b 316c -/ ~{App2_3

J 2 <) J
312 312 312 312

FIG. 3B

US 9,207,965 B2

1
MANAGING MULTI-APPLICATION
CONTEXTS

FIELD OF THE INVENTION

Embodiments of the invention generally relate to comput-
ing environments, and more particularly, to managing appli-
cation states across collaborative environments.

BACKGROUND

A user working within a data context, i.e., a set of active
applications with associated data sets to accomplish one or
more tasks, is often interrupted by the need to invoke another
data context, i.e., other applications, other data sets in the set
of active applications, or both, in order to perform an unre-
lated task. At a later time, the user may wish to return to the
first data context. Reinstating the first data context using
existing technology is difficult and limited, particularly as the
number of applications or data sets grow, as more time elapses
between the initial interruption and reinstating the first con-
text, as resources such as memory become more scarce, and
as more application state altering events (for example, restart-
ing the operating system) occur. Moreover, current technol-
ogy is limited in allowing for data context continuity in a
collaborative environment (such as an online meeting) across
temporal boundaries.

SUMMARY

It is desirable to implement a method and system to allow
a user to conveniently save a data context supporting a task,
perform a separate thread of activity, and subsequently
restore the original data context, including in a collaborative
environment.

A method for managing software application states
includes selecting a plurality of applications each of which
includes a state. A plurality of data contexts are generated
based on the selected applications and their respective states.
The data contexts are pushed onto a data stack, and are
popped at a later time for reinstatement. One or more of the
above steps is performed using a program executable by a
processor on a computer.

A system for managing software application states, accord-
ing to an aspect of the disclosed invention, includes a com-
puter having a processor, a computer-readable storage device,
and a program embodied on the storage device for execution
by the processor. The program has a plurality of program
modules, including: a selecting module configured to select a
plurality of applications wherein each of the plurality appli-
cations includes a state; a generating module configured to
generate a plurality of data contexts based on the selected
applications and their respective states; a pushing module
configured to push the plurality of data contexts onto a data
stack; and a popping module configured to pop the plurality of
data contexts from the data stack.

A computer program product for managing software appli-
cation states, according to an aspect of the disclosed inven-
tion, comprises a computer-readable storage medium having
program code embodied therewith. The program code is read-
able/executable by a processor of a computer to perform a
method including: selecting a plurality of applications, by the
processor, wherein each of the plurality of applications
includes a state; generating a plurality of data contexts, by the
processor, based on the selected applications and their respec-
tive states; pushing the plurality of data contexts, by the

10

30

35

40

45

55

2

processor, onto a data stack; and popping the plurality of data
contexts, by the processor, from the data stack.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

These and other objects, features and advantages of the
present invention will become apparent from the following
detailed description of illustrative embodiments thereof,
which is to be read in connection with the accompanying
drawings. The various features of the drawings are not to scale
as the illustrations are for clarity in facilitating one skilled in
the art in understanding the invention in conjunction with the
detailed description.

FIG. 1 is a schematic block diagram of an embodiment of
a computer system for implementing a method according to
an embodiment of the invention;

FIG. 2 is a flow chart diagram of a method executable by
the computer system depicted in FIG. 1, according to an
embodiment of the invention;

FIG. 3A is a schematic block diagram depicting a single
user environment using the method depicted in FIG. 2,
according to an embodiment of the disclosed invention; and

FIG. 3B is a schematic block diagram depicting a multi-
user environment using the method depicted in FIG. 2,
according to an embodiment of the disclosed invention.

DETAILED DESCRIPTION

Referring to FIG. 1, a schematic of an exemplary comput-
ing system is shown. The computer system 10 is one example
of a suitable computer system and is not intended to suggest
any limitation as to the scope of use or functionality of
embodiments of the invention described herein.

In the computer system 10, shown in FIG. 1, a computer/
server 12 is operational with numerous other general purpose
or special purpose computing system environments or con-
figurations. Examples of well-known computing systems,
environments, and/or configurations that may be suitable for
use with the computer/server 12 include, but are not limited
to, personal computer systems, server computer systems, thin
clients, thick clients, hand-held or laptop devices, multipro-
cessor systems, microprocessor-based systems, set top boxes,
programmable consumer electronics, network PCs, mini-
computer systems, mainframe computer systems, and distrib-
uted cloud computing environments that include any of the
above systems or devices, and the like. The computer system
10 may be a node in a multi-node computer network, such as
those in a data center.

The computer/server 12 may be described in the general
context of computer system-executable instructions, such as
program modules, being executed by a computer system.
Generally, program modules may include routines, programs,
objects, components, logic, data structures, and so on that
perform particular tasks or implement particular abstract data
types. The computer/server 12 may be practiced in distributed
cloud computing environments where tasks are performed by
remote processing devices that are linked through a commu-
nications network. In a distributed cloud computing environ-
ment, program modules may be located in both local and
remote computer system storage media including memory
storage devices.

As shown in FIG. 1, the computer/server 12 in the com-
puter system 10 is shown in the form of a general-purpose
computing device. The components of the computer/server
12 may include, but are not limited to, one or more processors
or processing units 16, a system memory 28, and a bus 18 that

US 9,207,965 B2

3

couples various system components including the system
memory 28 to the processor 16.

The bus 18 represents one or more of any of several types
of bus structures, including a memory bus or memory con-
troller, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus architec-
tures. By way of example, and not limitation, such architec-
tures include Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus.

The computer/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by the computer/server 12,
and it includes both volatile and non-volatile media, remov-
able and non-removable media.

The system memory 28 can include computer system read-
able media in the form of volatile memory, such as random
access memory (RAM) 30 and/or cache memory 32. The
computer/server 12 may further include other removable/
non-removable, volatile/non-volatile computer system stor-
age media. By way of example only, the storage system 34 can
be provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a“hard drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (e.g., a “floppy disk™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media
can be provided. In such instances, each can be connected to
the bus 18 by one or more data media interfaces. As will be
further depicted and described below, the memory 28 may
include atleast one program product having a set (e.g., at least
one) of program modules that are configured to carry out the
functions of embodiments of the invention.

The program/utility 40, having a set (at least one) of pro-
gram modules 42, may be stored in the memory 28 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an implemen-
tation of a networking environment. The program modules 42
generally carry out the functions and/or methodologies of
embodiments of the invention as described herein.

The computer/server 12 may also communicate with one
or more external devices 14 such as a keyboard, a pointing
device, a display 24, etc.; one or more devices that enable a
user to interact with the computer/server 12; and/or any
devices (e.g., network card, modem, etc.) that enable the
computer/server 12 to communicate with one or more other
computing devices. Such communication can occur via Input/
Output (I/O) interfaces 22. Still yet, computer the system/
server 12 can communicate with one or more networks such
as a local area network (LAN), a general wide area network
(WAN), and/or a public network (e.g., the Internet) via a
network adapter 20. As depicted, the network adapter 20
communicates with the other components of the computer/
server 12 via the bus 18. It should be understood that although
not shown, other hardware and/or software components could
be used in conjunction with the computer/server 12.
Examples, include, but are not limited to: microcode, device
drivers, redundant processing units, external disk drive
arrays, RAID systems, tape drives, and data archival storage
systems, etc.

20

40

45

55

4

Referring now to FIGS. 1-2, a method 200 according to an
exemplary embodiment of the disclosed invention may be
deployed as a program 40 on a computer, such as the com-
puter system 10, as depicted in FI1G. 1. In step 204, the method
200 may select one or more open or active applications, each
application having a state, for reinstatement at another time
(or when certain conditions are met). Illustrative and non-
limiting examples of such applications include: in general,
desktop or mobile applications; email clients, spreadsheet
and word processors, instant messaging clients, document
libraries, web browsers, multimedia players, and utilities.
Tlustrative and non-limiting examples of application states
include: open and/or active documents (such as text files in a
word processing application, or email message windows in an
email client) and associated meta data, application prefer-
ences, display preferences (such as window/display zoom
level, window and panel arrangements, designation of one
window as active, etc.), shortcuts (such as customized key-
board shortcuts), database connections, position information
in multimedia files (such as time elapsed in audio or video
files), and contact connections (such as active chat, video or
audio connections between users). References to applications
herein (including open, active, or selected applications)
include such applications and their respective states and data
sets.

With continued reference to FIG. 1-2, according to one
exemplary embodiment of the invention, the selection func-
tion of the step 204 may be facilitated in a number of ways,
including, without limitation, through user input or through
predefined instructions.

The selection step 204 of the method 200 may be initiated
by a user of the system 10 while performing a first set of
related tasks. For example, the user may be editing two text
documents in a word processor, reviewing emails in an email
client, viewing a website in a web browser, and chatting with
a colleague using an instant messenger, as part of working on
apresentation. At some point during the performance of these
tasks, the user may wish to work on a second set of tasks, the
performance of which may necessitate opening additional
applications and/or additional data sets in currently active
applications. Doing so may clutter the user’s digital work-
space on the system 10 (for example, on the display 24) and/or
reduce the system’s 10 performance (for example, by reduc-
ing the amount of available RAM memory 30) and lead to loss
of productivity. Closing the applications and data sets asso-
ciated with the first task-set to accommodate the performance
of the second task-set may be undesirable, since reopening
those applications and data sets at a later time may be ineffi-
cient, time consuming, and error prone. To avoid these and
related problems, the user may select one or more of the
applications and data sets related to the first task-set for rein-
statement. Although the preferred embodiment of the dis-
closed invention facilitates reinstatement of applications used
to perform related tasks, the selected tasks need not be related
in any way. It is sufficient that the user intends for a set of
applications to be grouped together in some fashion, using the
disclosed invention.

Where the selection function of step 204 is facilitated
through user input, a selection functionality may (without
limitation) be provided as a menu command link or a key-
board shortcut for applications run on the system 10, similar
to functionalities such as the open, save and print functions
seen in menu bar options of nearly all modern desktop appli-
cations. According to one embodiment, activating the menu
command link or keyboard shortcut may select all data sets
(such as open windows, preferences, metadata, etc.) associ-
ated with the application from which the link or the keyboard

US 9,207,965 B2

5

shortcut is activated. For example, taking such action while
working with a word processor may select the open text
documents and other data associated with the word processor,
but not other open applications or data sets. According to
another embodiment, activating the menu command link or
keyboard shortcut may select all open applications and data
sets on the system 10. According to yet another embodiment,
the scope of such selection may be configurable by a user
through, for example, a system preferences option, which
may be configured at any time (for example, through a con-
figuration window) before executing the method 200, at the
time of application selection in step 204, or both. When the
scope of such selection is configurable at the time of selection
in step 204, activating the menu command link or the key-
board shortcut may cause the system 10 to display a window
to the user with a prompt, allowing the user to determine the
scope of the selection by clicking on a checkbox associated
with each of the open applications and data sets. The func-
tionalities described herein may be implemented at the appli-
cation level, the operating system level, or both.

In a related embodiment, the selection functionality of the
method 200 may be provided by a stand-alone application
interacting with the operating system and the other computer
programs 40 that run on the system 10. The stand-alone
application may present the user with the same functionality
and configurability as those described above in connection
with other embodiments of the invention. Its settings may be
configured at any time by the user, through activating and
interacting with the application.

With continued reference to FIGS. 1-2, in an embodiment
where the selection function of step 204 of the method 200 is
facilitated through predefined instructions, such instructions
may be defined as part of the code for the program 40 imple-
menting the method 200. For example, the method 200 may
include predefined instructions to select, for reinstatement, all
applications open on the system 10 five minutes before a
scheduled reboot of the system 10. According to this embodi-
ment, the selection step 204 is automatic and is initiated
without direct user input (although the user may be allowed to
modify this functionality by, for example, defining the scope
of the selection or the schedule for its performance).

Referring now to FIGS. 1-3A, a user 304 may be working
with a set of open applications 308 (for example, Appl__1,
Appl_2, and Appl_ 3) running on the computer system 10.
In step 204, the user 304 may choose, at some point, to save
some or all of the open applications 308 for reinstatement,
and may do so by selecting them (for example, by pressing a
keyboard shortcut that globally selects the multiple applica-
tions open on the system 10) and their respective states (for
example, the open windows, documents, preferences, meta-
data, etc. that are associated with the open applications) for
reinstatement. Alternatively, the selection may be initiated
automatically after certain predefined conditions are met. For
example, where the system 10 is close to rebooting for pre-
scheduled maintenance, the operating system may initiate the
method 200 to save the user’s 304 work.

With continued reference to FIGS. 1-3A, the method 200
may generate a first data context 312 in step 208, based on the
selected applications 316a (including their respective states),
selected in step 204. According to an exemplary embodiment
of the disclosed invention, the data context 312 contains
information about the selected applications 3164 (including
their respective states), but does not contain a copy of them.
The data context 312 may include the names and file paths (or
memory locations) for the open applications 308 (including
their respective states), as well as for their preference files and
other information associated with them. The data context 312

10

15

20

25

30

35

40

45

50

55

60

65

6

may further include relevant time information, such as the
time at which the data it references was selected in step 204,
or the time at which the data context 312 itself is created. It
may further include user information, security and sharing
information, as well as program version and operating system
information.

The amount and type of information that should be stored
in the data context 312 depends in large part on the specific
environment in which the method 200 is deployed, the nature
of'the selected applications themselves, and what constitutes
sufficient information for reinstatement. According to
another embodiment of the invention, the context 312 may
include the actual selected data, such as the selected open
applications 308 and their respective states.

With continued reference to FIGS. 1-3A, in step 212, the
method 200 communicates the generated first data context
312, alsoreferred to as Contextl__1,toa coordinator 320. The
method 200 pushes Contextl 1 onto a data stack 324, such
as Stack 1. The coordinator 320 may track the generated
context 312, any existing data contexts 312, and any others
that the method 200 may generate at a later time, using one or
more data stacks 324 (for example, Stack 1 through
Stack_n). Pushing the data context 312 onto the data stack
324 facilitates the tracking, grouping, and reinstatement of
the underlying application data and their states in other steps
of the method 200. The coordinator 320 may designate
Stack 1 as the active or default data stack, such that any
subsequent data context 312 pushes in step 212 will push the
corresponding data context 312 onto Stack 1. Alternatively,
the coordinator may generate or designate another data stack
324 as the default data stack, through input from the user 304,
or according to predefined instructions, or both. According to
arelated embodiment, the data stack 324 to which a generated
data context 312 is pushed may be set or modified by the user
308 and/or according to predefined instructions.

Additionally, the data stack 324 may be manipulated using
standard techniques such as branching, duplicating, labeling,
etc., according to the needs of the particular embodiment in
which the invention is used.

With continued reference to FIGS. 1-3 A, the selection step
204 of the method 200 may again be initiated by the user 304
(or automatically, according to another embodiment), to
select Appl_ 2 and Appl_ 3, but not Appl__1, for reinstate-
ment. In step 208, the method 200 may generate a second data
context 312, also referred to as Contextl 2 in FIG. 3A,
containing information about the selected applications 3165.
In step 212, the method 200 pushes Contextl 2 onto the
active data stack 324 (for example, Stack _1). A user’s 304 or
the system’s 10 choice of which data stack 324 to use when
pushing a data context 312 in step 212 depends on many
factors, including, without limitation: the degree of similarity
between the data contexts 324 (such as shared users or per-
missions), the time at which they are pushed, and whether
they pertain to the same or related tasks.

With continued reference to FIGS. 1-3 A, the user 304 may
initiate the popping step 216 to reinstate a data context 312
from a data stack 324. Alternatively, the method 200 may
initiate the step 216 automatically when certain predefined
conditions are met. For example, the method 200 may pop a
data context 312 associated with a particular task every day at
a predetermined time. In a more specific example, the user
304 may wish to work on a particular financial report between
9:00-11:00 a.m. every day. The work may require the user 304
to have several applications and spreadsheets open for this
purpose. The user 304 may manually initiate the popping step
216 every morning at 9:00 a.m. (and likewise may manually
initiate the pushing step 212 at 11:00 a.m. when the allotted

US 9,207,965 B2

7

time for work on the financial reports is complete) or may
create a schedule for daily reinstatement (and/or daily push-
ing) of the relevant data stack 312. In a related embodiment,
initiation of the popping step 216 may be a preconfigured
function of the operating system or any other program 40
operating on the system 10.

Referring now to FIGS. 1-3B, and FIG. 3B in particular, an
alternative embodiment of the disclosed invention may
include one or more users 304 (for example, User 1 and
User__2) collaboratively interacting on a computer network,
and each using one of two systems 10. The users 304 may
further be connected to a third system 10 functioning as a
server. Alternatively, and without limitation, one of the two
users’ 304 systems 10 may operate as a server in addition to
facilitating its respective user’s 304 work. The collaboration
may be, for example, an online meeting between the two users
304. User__1 may be running the following applications:
Appl_1, Appl_2, Appl_3. User_ 2 may be running the
following applications: App2__1, App2_ 2, App2_3. These
applications may be identical across the network (for
example, Appl 1 and App2 1 may be the same applica-
tion), or they may be entirely different.

During the course of the collaborative meeting, User 1
may, through initializing step 204 of the method 200, select
the group of applications 316a for reinstated at another time.
In step 208, the method 200 generates a data context 312 for
User__1, which may be designated, for example, as Con-
textl__ 1, in the same manner as described in connection with
FIG. 3A. The method 200 may further generate a second data
context 312 based on User 2’s running applications, which
may be designated as Context2__1. According to one embodi-
ment of the invention, the method 200 may prompt User_ 2
(the non-initiating user) to select a set of applications 316¢
running on User 2’s system 10 in creating Context2 1.
Other embodiments may automatically select the applica-
tions 316¢ based on a preconfigured set of instructions (for
example, the method 200 may be preconfigured to select all
running applications on User_ 2’s system 10).

The method 200 generates a data stack 324 designated, for
example, as Stack 1 and pushes each data context 312 (Con-
textl_1 and Context2_ 1) onto Stack 1, through the coordi-
nator 320. Information contained in Stack 1 may reside on a
system 10 that acts as a server, and the server may be different
from the systems 10 in use by User__1 and User 2. Alterna-
tively, one of the two systems used by User__1 and User_ 2
may act as the server. In yet another alternative embodiment,
both systems 10 may store the Stack 1 information. Stack_ 1
contains information necessary to reinstate each user’s 304
running applications (which include their respective states, as
defined above) through the method’s 200 other steps at
another time. Each user’s 304 data context 312 may be
pushed onto Stack 1 as it is generated, or at the same time
once both are generated. As described in connection with
FIG. 3A, the generated data contexts 312 may contain appli-
cation states as well as version, permissions, sharing, prefer-
ences, time and other associated information.

During the course of the collaborative meeting between
User__1 and User_ 2, User_ 2 may decide to save a second set
of applications (which may overlap with the first set) for
reinstatement at another time. User_ 2 may initiate the
method 200 and select, in step 204, one running application
316d. In step 208, the method 200 generates a data context
312 designated as Context2 2 based on the selected appli-
cation 316d. The method 200 may also generate a second data
context 312 based on User_1’s selected application 3165,
designated as Contextl 2. By way of example, the need for
the two users 304 to save different applications may arise

5

10

20

25

30

35

40

45

50

55

60

65

8

when User__1 is running a spreadsheet application and dic-
tating notes to User_ 2, who is typing the notes on a word
processing application. While each user 304 runs different
applications, in this example, the users 304 may decide that
their respective tasks are related, and should be saved for
reinstatement at another time.

Based on the data contexts 312 generated in step 208, the
method 200 pushes the data contexts 312 in step 212 onto a
second data stack 324, designated, for example, as Stack_ 2,
through the coordinator 320. For each data stack 324, the
corresponding actual data referenced and tracked by the data
contexts 312 within that data stack 324 (such as the applica-
tions, their states, and related data sets) may be stored locally
on each user’s 304 system 10.

Each user 304 may decide, at any point, to reinstate one or
more of the data stacks 324 tracked by the coordinator 320, by
initiating the popping step 216 of the method 200. For
example, User__1 may decide to pop Stack 1. The method
200, by analyzing Stack 1, may determine that it is shared
with User_ 2, and therefore may attempt to locate User_ 2. If
User_ 2 is not located, or is not interested in resorting
Stack 1 on User_ 2’s system 10, the method 200 may pop
Stack 1 locally on User__1’s system 10. The method 200
performs the popping step 216 by reinstating those applica-
tions, application states, and data sets identified in Contextl
1, which is the data context 312 associated with User_ 1.
Context2__1, which contains information for User_ 2, is not
used in the popping step 216. However, if User_ 2 is available
and agrees to the restoration, then the method 200 may pop
Stack 1 on both User__1’s and User_ 2’s systems 10, with
Contextl__1 reinstated for User 1, and Context2__1 reinstated
for User 2. Where User_ 2 is not an initiating user 304 (i.e.,
where User_ 2 did not initiate the pop), the method 200 may
ascertain User_2’s agreement to having its corresponding
data context 312 restored by presenting User 2 with a
prompt. Alternatively, the method 200 may ascertain User__
2’s agreement according to a predefined configuration, such
as User_2’s saved preferences. User 1 and User_ 2 may
similarly initiate the popping step 216 to pop Stack 2 in the
same manner as the reinstatement for Stack_ 1.

With continued reference to FIGS. 1-3B, according to an
exemplary embodiment of the disclosed invention, a gener-
ated data context 312 may contain two sets of information
about the applications, application states, and their data sets
that are referenced in the data context 312: a View State,
which references the application, window, and/or data set(s)
that are active or in focus; and a Model View, which includes
the underlying data state. For example, where User 1 selects
a word processor application having one text document open
in step 204, the method 200 may designate the application and
the corresponding on-screen window placement information
as the View State, and the contents of the text file as the Model
View of the data context 312 that is generated in step 208 (and
pushed in step 212). Between the time that the method 200
generates and pushes the data context 312 in steps 208 and
212, and when that data context is popped in step 216, the
underlying data may change. For example, User 1 may
change the contents of the text document after it has been
referenced in a pushed data stack 324, but before it is popped
again in step 216. Therefore, there may be a conflict between
the pushed state and the popped state. These conflicts may be
resolved using version control and conflict resolution tech-
niques which are well-understood by a person of ordinary
skill in the art. Version control solutions used in embodiments
of the disclosed invention may optionally use, for example,
binary copies of Model States to facilitate conflict resolution.

US 9,207,965 B2

9

According to an alternate embodiment of the invention,
User_ 1 and User_ 2 may share the same Model State infor-
mation but have different View States, and vice versa. For
example, both User_ 1 and User_ 2 may be working on a
common set of applications, but each of them may have the
particular window associated with each selected application
placed on a different portion of the user’s screen. In this
instance, the data context 312 for each of the users 304 may
have an identical or similar Model State, but an entirely
different View State.

With continued reference to FIGS. 1-3, according to a
preferred embodiment of the disclosed invention, each appli-
cation selected in step 204 provides its own mechanism for
saving and reinstating its state (i.e., pushing in step 212 and
popping in step 216) after initiation of the relevant step by the
method 200.

Non-limiting examples of embodiments that may benefit
from the disclosed invention include a meeting between
executives or board members of a corporation, students par-
ticipating in an online classroom, and remote presentations.
These recurring collaborative meetings may require partici-
pants, each of whom may have different roles as presenters or
participants, to run a number of applications and data sets on
their respective systems 10. They may wish to save their work
at the end of one meeting, and to pick up where they left off at
the next meeting. At a corporate board meeting, for example,
the board may wish to load the company’s financial informa-
tion at the beginning of each session. The participants may
create a schedule for their meeting that includes initiation of
the method 200 at a predefined time corresponding to the
scheduled meeting time and date. Likewise, they may sched-
ule for the method 200 to save their work at the conclusion of
each meeting.

While embodiments of the disclosed invention have been
primarily discussed in connection with saving and restoring
related tasks, the saved applications and their respective states
need not be related in any way. In fact, they may include any
application and its respective state that a user 304 wishes to
save as part of a particular collection. Moreover, references to
collaborative uses of the invention are intended to be exem-
plary; the invention may be practiced by an individual user,
even when the individual user is interacting with another user.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon. Additionally, while
embodiments of the disclosed invention are discussed in con-
nection with desktop applications, it will be apparent to one of
ordinary skill in the art that the invention may be used in other
computer devices as described and claimed, including mobile
devices.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)

10

25

30

40

45

50

55

10

of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention have been described above
with reference to flowchart illustrations and/or block dia-
grams of methods, apparatus (systems) and computer pro-
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra-
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com-
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

US 9,207,965 B2

11

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

What is claimed is:
1. A method for managing software application states,
comprising:
selecting a plurality of applications wherein each of the
plurality of applications includes a state, and wherein the
plurality of applications are accessed collaboratively by
a plurality of users;

generating a plurality of data contexts based on the selected
applications and their respective states for the plurality
of users;

pushing the plurality of data contexts onto a data stack; and

popping the plurality of data contexts from the data stack to

reinstate collaborative access by the plurality of users,
wherein at least one of the above steps is performed
using a program executable by a processor on a com-
puter.

2. The method of claim 1, wherein one or more of the steps
of the method are initiated by a user.

3. The method of claim 2, further comprising:

providing a link for selection by the user to initiate one or

more of the steps of the method.

4. The method of claim 2, further comprising:

providing a keyboard shortcut for activation by the user to

initiate one or more of the steps of the method.

5. The method of claim 1, wherein one or more steps of the
method are performed at a specified time.

6. The method of claim 1, wherein the step of popping the
data contexts includes presenting the states of the plurality of
applications on a display for viewing by a user.

7. The method of claim 1, wherein the plurality of appli-
cations run on one or more hosts, the applications being
usable by a plurality of users.

8. A system for managing software application states, com-
prising:

a first computer having a processor, and a computer-read-

able storage device; and

10

15

20

25

30

35

40

45

50

55

60

65

12

aprogram embodied on the storage device for execution by
the processor, the program having a plurality of program
modules, including:

a selecting module configured to select a plurality of
applications wherein each of the plurality applica-
tions includes a state, and wherein the plurality of
applications are accessed collaboratively by a plural-
ity of users;

a generating module configured to generate a plurality of
data contexts based on the selected applications and
their respective states for the plurality of users;

a pushing module configured to push the plurality of
data contexts onto a data stack; and

apopping module configured to pop the plurality of data
contexts from the data stack to reinstate collaborative
access by the plurality of users.

9. The system of claim 8, wherein the plurality of program
modules further include:

an initiating module configured to receive input from a user
to direct initiation of one or more of the plurality of
program modules.

10. The system of claim 9, wherein the initiating module is
further configured to provide a link for selection by the user to
initiate one or more of the plurality of program modules.

11. The system of claim 9, wherein the initiating module is
further configured to provide a keyboard shortcut for activa-
tion by the user to initiate one or more of the plurality of
program modules.

12. The system of claim 8, wherein one or more of the
plurality of program modules are configured to execute at a
specified time.

13. The system of claim 8, wherein the system further
comprises a display, and the plurality of program modules
further include:

a displaying module configured to present the states of the
plurality of applications on the display for viewing by a
user.

14. The system of claim 8, further comprising a second
computer having a processor and a computer-readable stor-
age device, wherein the program is also embodied on the
storage device of the second computer for execution by its
processor, the plurality of program modules of the program
on the first computer and the second computer further includ-
ing:

a coordinating module configured to coordinate the execu-
tion of the selecting, generating, pushing and popping
the modules of the program on the first and second
computers.

15. A computer program product for managing software
application states, the computer program product comprising
a computer-readable non-transitory storage medium having
program code embodied therewith, the program code read-
able/executable by a first processor of a first computer to
perform a method comprising:

selecting a plurality of applications, by the processor,
wherein each of the plurality of applications includes a
state, and wherein the plurality of applications are
accessed collaboratively by a plurality of users;

generating a plurality of data contexts, by the processor,
based on the selected applications and their respective
states for the plurality of users;

pushing the plurality of data contexts, by the processor,
onto a data stack; and

popping the plurality of data contexts, by the processor,
from the data stack to reinstate collaborative access by
the plurality of users.

US 9,207,965 B2

13

16. The computer program product of claim 15, wherein
execution of one or more steps of the method, by the proces-
sor, are initiated by a user.

17. The computer program product of claim 16, wherein
the method includes providing a link to the user for selection,
the selection of the link initiating execution by the processor
of one or more of the steps of the method.

18. The computer program product of claim 16, wherein
the method includes providing a keyboard shortcut to the user
for activation, the activation of the keyboard shortcut initiat-
ing execution by the processor of one or more of the steps of
the method.

19. The computer program product of claim 15, wherein
one or more steps of the method are configured to be per-
formed by the processor at a specified time.

20. The computer program product of claim 15, wherein
the method further comprises:

coordinating the selecting, generating, pushing, and pop-

ping steps of the method between a plurality of proces-
sors each on a respective plurality of computers, includ-
ing the first processor of the first computer, wherein each
of'the plurality of processors executes one or more steps
of the method.

15

20

14

